Chapter 5

Practical Aspects of Geostatistics in
Hazardous, Toxic, and Radioactive
Waste Site Investigations

5-1. General

a. Inthischapter, several example applica-
tions are described. The applications have been
developed using hydrologic, geologic, and contami-
nant data from established and well-studied haz-
ardous waste sites. The real nature of the data
permits discussion of some problems that can
occur during HTRW dite investigations that stem
not only from natura field conditions, but also
from typical problemsthat are associated with the
types of datainvolved. In addition, the real nature
of the example data provides an opportunity for
comparison between kriging estimates and the real
data. 1n accordance with the purpose and scope of
this ETL, these comparisons will be brief and
general. ThisETL does not provide the compre-
hensive analysis of data that is addressed by other
more elaborate studies.

b. The principal intent of the examplesisto
provide systematic descriptions for afew of the
large number of possible types of applications that
investigators may use during HTRW site investi-
gations. The examples are not intended to provide
guidance for comprehensive analysis of the
included data. This ETL will, however, present
some fundamental problems that can occur in
geodtatistical applications and, in some examples,
indicate some possible aternatives.

c. With each example, a purpose will be
established and a general environmental setting
will be given. Most aspects of variogram con-
struction and calibration will be briefly described
and illustrated graphically and in tabular form. A
comprehensive treatment of variogram construc-
tion has been presented in Chapter 4.

d. GEO-EAS software has been used when-
ever the example data did not need universal krig-
ing; for those examples, STATPAC was used. As
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indicated in Chapter 3, both of these software
packages run on the DOS platform (Table 3-1),
which will probably be most convenient to readers.
The results of kriging estimates are portrayed by
gray-scale maps rather than by contours because
of the objective nature of the gray-scale format.
North is at the top of al maps presented in this
ETL, athough this orientation may represent some
deviation from the real data.

5-2. Water-Level Examples

a. Thefollowing examples are for ground-
water levels. The principal purpose of the exam-
plesisto expose the reader to a kriging exercise
using groundwater levels and to indicate how, in a
simple manner, kriging standard deviations may be
useful to investigators interested in evaluating
monitoring networks. The data come from a
water-table setting in unconsolidated sediments
where the local relief for the land surface is about
30 m. The datainvolved in this example are con-
sidered virtualy free of actual measurement error.

b. Thelocation of measured water levelsis
shown in Figure 5-1a and the basic univariate
statistics for this data set are listed in Table 4-1;
modifications to the measured data, in the form of
addition and remova of measured values, are
shown in Figures 5-1b and 5-1c. The techniques
described in Chapter 4 were used to guide the
following steps for variogram construction:

(1) A raw variogram analysis, along with
basic hydrologic knowledge of water-level behav-
ior, indicated that universal kriging would be
needed for this anaysis.

(2) To obtain astable variogram of residuals,
an iterative, generalized |east-squares operation
was initially used to remove prominent linear drift
of theform a + bu + cv, observed in the measured
water levels.

(3) After drift was removed, residuals were
determined to be stationary and universal kriging
with alinear drift was appropriate.
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Figure 5-1. Measured data for water-level examples--A, original data; B, original data without dropped sites;
C, original data with added sites (added sites indicated with +) (Sheet 1 of 3)

A Gaussian model was used to fit the stabilized
variogram of residuals (Figure 5-2a), which has a
nugget of 0.093 m?, asill of 2.69 m? and arange
of 1,219 m (Table 5-1).

(5) Cross-validation was performed, and the
results are shown in Figures 5-2b and 5-2¢, and

listed in Table 5-1. Cross-validation statistics
conform to the criteria discussed in Chapter 4.

c. Linear drift iscommonly observed in
groundwater elevation data where there are no
major anthropogenic activities, such as large
groundwater withdrawals. With these
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Figure 5-1. (Sheet 2 of 3)

circumstances there is usually afairly uniform and
genera groundwater movement that is generally
expressed in terms of direction. This uniform and
general nature introduces a nonstationary element
to the data that, in geostatistics, is referred to as
drift. Asindicated in Chapter 4, the presence of
drift isindicated by a parabolic variogram shape.
In this example, theinitial variogram in the raw
variogram analysis had a characteristic parabolic
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shape and alinear drift was identified. Once the
drift was identified and characterized, universal
kriging procedures were used.

d. A Gaussian model is usually appropriate
for variograms with highly continuous variables
such as groundwater-elevation data, and it is par-
ticularly appropriate in this example. The vario-
gram (Figure 5-2a) at small lags beyond the nugget
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has an upward concavity that cannot be fit with a
linear, spherical, or exponential model. The
observed shape was interpreted as a function of
continuous small-scale variability. The Gaussian
moddl fits the bowl shape of the small lag data
(and other datato alag of about 610 m) well, but
it is not flexible enough to closdly fit the points
much beyond 610 m, indicating that kriging esti-

54

mates should be computed using neighborhoods
with a search radius less than 610 m. In Chapter
4, theinitial part of the variogram was described
as having the most effect on subsequent kriging
estimates.

e. Theestablished variogram then was used
with the measured data to produce universal
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Figure 5-2. Variogram and variogram cross-validation plots for residuals in water-level example--A, theoretical
variogram; B, cross-validation scatterplot; C, cross-validation probability plot (Sheet 1 of 3)

kriging estimates for al pointsin a 26-by-26 grid
with agrid size of about 61-by-61 m. A gray-
scale map of the kriging water levelsis shown in
Figure 5-3a and basic univariate kriging estimate
dtatistics are listed in Table 5-2a (water level A).
The kriging results a are a good representation of
the results from other more elaborate studies.

f. Kriging standard deviations for the kriging
estimates are shown in Figure 5-3b. The magni-
tude of kriging standard deviations can provide
investigators with a direct indication of where the
uncertainty associated with kriging estimatesis
relatively high or low. The areas of greatest uncer-
tainty for the kriged water levels are in the upper
right and lower left corners of the map, where
standard deviations are as high as about 1.4 and
0.8. Not surprisingly, these areas are where the
density of the measured dataisrelatively low.
Throughout much of the remainder (about 70 per-
cent) of the map, the kriging standard deviation is
almost constant at about 0.35.

5-5

g. To usethekriging standard-deviation
values in amore quantitative manner, the investi-
gator needs to establish some assurance that the
measured data and the reduced kriging errors are
approximately normally distributed and a so that
the assumption of stationary residuals after drift
removal is correct. If the investigator is confident
about these assumptions, then the basic statistical
principles involving confidence intervals can be
applied. In this example, the standard deviation of
about 0.35 throughout most of the map indicates
that there is a 95-percent chance that the true value
a alocation where there is a kriging estimate will
be within about 0.70 (twice the kriging standard
deviation) of the kriging estimate.

h. Asan example of evaluating network
density and the accuracy of kriging estimates, two
new maps were developed. To make the first map,
adecrease in network density was effected by
removing nine measured locations from the north-
west part of the area (Figure 5-1b) where sampling
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density was high and kriging standard deviations
were low. Kriging estimates were produced for the
same grid and the basic univariate kriging estimate
dtatistics are listed in Table 5-2 (water level B).
The map shown in Figure 5-3c indicates that the
ratio of the original kriging standard deviations and
the kriging standard deviations with the nine mea-
sured locations removed is ways very close to
1.00, which indicates that there is very little dif-
ference between the two sets of kriging standard
deviations and that water levels are oversampled in
the area where the nine measured |ocations were
removed.

i. To produce the second map (Figure 5-1¢)
nine locations were added in the southwest corner
where the sampling density was relatively low and
the kriging standard deviation was relatively high.
In section 2-4, Equation 2-47 indicates that the
universal kriging variance depends on the vario-
gram, the type of trend, and measurement loca-
tions; in this respect the kriging standard deviation
does not depend on the values at measurement

locations. Consequently, values of zero were used
for the nine new measurement locations and only
the resultant map of kriging standard deviations
(Figure 5-3d) is of interest. The map shows that
the kriging standard deviations in the lower left
corner, which formerly had values of about 0.8,
have been decreased by afactor of approximately
0.25, which indicates that the kriging estimates,
based on the geometry of the network, are more
reliable.

5-3. Bedrock-Elevation Examples

a. Thefollowing examples are for bedrock
elevations. The principal purposes of the examples
areto familiarize the reader with akriging exercise
using bedrock elevations and to describe block
kriging. The data come from an area where bed-
rock consists of a series of intercalated terrestrial
deposits that have been weathered somewhat and
then covered with alluvium. The opportunity for
measurement error in these types of datais
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inevitable because the determination of just where
bedrock beginsis complicated and subjective.

b. The sat of measured locations, set A, is
shown in Figure 5-4a and the basic univariate sta-
tisticsare listed in Table 4-1 (bedrock A); modifi-
cations to the measured data, in the form of
removal of sitesis shown in Figure 5-4b. The
techniques described in section 4-1 were used to
guide the following steps for variogram
construction:

(1) Theraw variogram indicated a stationary
spatial mean. The data were assumed to be suit-
able for ordinary kriging.

(2) Anisotropic Gaussian model was used to
fit the variogram which had a nugget of 0.650 m?,
asll of 12.54 n?, and arange of 914 m
(Table 5-1, bedrock A).

5-7

(3) Cross-validation was performed, and the
results, (Table 5-1, bedrock A), were not
acceptable.

c. Thecrossvaidation exercise produced a
reduced-root-mean-squared error of 2.146
[Table 5-1 (bedrock A)] which indicates, as
described in Chapter 4, that the kriging variance is
underestimated to an unsatisfactory degree. Fur-
ther attempts to fit the Gaussian model to the
sample variogram points produced better cross-
validation statistics; however, the Gaussian curve
began to depart substantially from the sample
variogram points at the lower lag sample points.
As aresult, the distribution of the residuals was
explored, and the eastern, and especially north-
eastern, parts were determined to contain prob-
lematic data values that rendered the distribution
nonhomogeneous. The nonhomogeneous natureis
related to an incised channel present on the
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bedrock surface. At thisjuncture, the measured
data were restricted to exclude the outlying mea-
surements. Before this decision was made, two
alternative methods for dealing with the outlying
values were considered and deemed beyond the
scope of this effort. However, abrief discussion of
the situation is appropriate.

d. Thefirst aternative considered was to fit a
contrived and nongradual surface to the measured
data and remove the outlier effect. A splined sur-
face could be capable of producing the desired
result. The decision whether or not to pursue such
aremedy becomes somewhat philosophical. Ina
relatively simple example, asin this bedrock
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example, such aremedy may be entirely appro-
priate; however, some investigators may support
the idea that the situation is actually dealing with
two unique and homogeneous domains. Therefore,
the second alternative considered, distributing the
kriging process so that each homogeneous domain
is addressed independently, becomes more attrac-
tive. In more complicated applications where a
large number of domains are present, a distributed

5-10

approach may be necessary to avoid an undue
amount of compromise.

e. Therestriction of measured data, set B, is
shown in Figure 5-4b and the basic univariate sta-
tisticsarelisted in Table 4-1 (bedrock B). The
restriction exercise resulted in removing 17 meas-
ured locations and in the truncation of the north-
eastern part of the area so that the area became
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polygona rather than rectangular. Again, the tech-
niques described in Chapter 4 were used to guide
the following steps for variogram construction:

(1) A Gaussian model was used to fit the vari-
ogram which had a nugget of 0.650 m?, asill of
8.36 m?, and arange of 732 m. The variogram
indicated a stationary spatial mean.

(2) Initial cross-validation was performed, and
the nugget was changed from 0.650 m? to 0.743 m?
to improve cross-validation statistics. The final
variogram is shown in Figure 5-5a and character-
istics are listed in Table 5-1.

5-11
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(3) Fina cross-validation was performed, and
the results, shown on Figures 5-5b and 5-5c and
listed in Table 5-1 (bedrock B), were acceptable.

f. Thelarge difference between the sill
defined for the initial data set and the sill for the
restricted data set (12.54 m? and 8.36 m?) supports
the hypothesis that the original data set is actually
two different domains. The final variogram then

5-12

was used, along with the measured data, to pro-
duce ordinary kriging estimates for all pointsin a
52-by-52 grid with a spacing of about 30-by-30 m,
which is truncated along the northeastern border
because of the restriction operation. For the krig-
ing procedure, a search radius of about 914 m
witha maximum of 16 and minimum of 8 sur-
rounding locations was specified. Gray-scale
maps of the kriging estimates and kriging standard
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Table 5-2
Univariate Statistics for Gridded Kriging Estimates in Example Applications®

Minimum Maximum Mean Median Standard
Example (Base (Base (Base base deviation Skewness
Identifier Transformation units) units) units) units) (base units) (dimensionless)
Water level A Drift 24.34 65.00 45.86 44.46 10.15 0.11
Water level B Drift 24.59 65.00 45.84 44.45 10.14 0.11
Bedrock B None 26.13 64.88 41.45 39.78 7.71 0.82
Bedrock C None 26.72 64.39 41.50 39.69 7.63 0.82
Water Natural log 2.92 7.07 5.17 5.03 0.72 -0.06
quality A

*Base units for water level A and B and bedrock B and C is feet; base unit for water quality A is log concentration, concentration in

micrograms per liter.

deviations are shown in Figures 5-6a and 5-6b,
respectively, and the univariate kriging estimate
dtatistics are listed in Table 5-2 (bedrock B). The
kriging results indicate channel-like features in the
bedrock surface, aswell as a prominent bedrock
high at the south border of the area; the results are
agood representation of the results from other
more elaborate studies.

g. For an example of block kriging, an invest-
igative goal of establishing block values of bedrock
elevation for afinite-difference groundwater model
grid having about 120- by 120-m cells was
assumed. The same variogram and search criteria
were used to estimate block values for a 13-by-

13 grid with about 120- by 120-m spacing; a
4-by-4 block was specified. Each kriging value
shown in Figure 5-6¢ is interpreted as an estimate
of the average value of bedrock elevation over the
about 120- by 120-m block. The standard devi-
ation for the block estimates is |ess than the stan-
dard deviation for the point estimates (Table 5-2).
Gray-scale maps of the kriging estimates and the
kriging standard deviations are shown in Fig-
ures 5-6¢ and 5-6d, and the univariate kriging
estimate statistics are listed in Table 5-2

(bedrock C).

5-4. Water-Quality Examples

a. Thefollowing examples are for water-
quality information consisting of concentrations

determined for a contaminant. The principal pur-
poses of the examples are to familiarize the reader
with a kriging exercise using water-quality infor-
mation and to illustrate indicator kriging. The
examples also will familiarize the reader with data
that are strongly anisotropic and need transforma-
tion. The data come from a water-table aguifer
developed in dluvid sediments where the depth to
water was less than about 23 m. Several analytical
laboratories were involved in measuring the con-
centration of the contaminant in the water-quality
examples. Each of the analytical |aboratories was
required to follow rather comprehensive guidelines
that specified tests of instrument performance
before sample determinations were made, as well
as measurement of extraction efficiencies.
Because of these performance guidelines, the
opportunity for errors due to instrument error was
considered to be either known or relatively low. In
addition to using performance guidelines, field
guality-assurance samples were aso collected.
These samples can be used to evaluate other types
of possible errors, such as cross-contamination
and representativeness of the sample. Duplicate
samples for the contaminant in the water-quality
examples indicate as much as 15 percent varia-
bility in reported results. This variability is not
entirely unusual and is most likely related to the
integrity of the analytical method or the method in
which the sample media was aggregated during
sample collection.

5-13
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b. Measured locations are shown in Fig-
ure 5-7 and the basic univariate statistics are listed
in Table4-1 (water quality A). Aninitia review
of the data indicated three important features.

(1) The data seemed to have strong anisotropy
at about 150 counterclockwise degreesto the east-
west baseline.

(2) The datarequired anatural log transfor-
mation so the distribution was approximated by a
normal distribution.

(3) No trends were indicated during prelimi-
nary exploration, and ordinary kriging was tenta-
tively selected as the appropriate technique.

c. Natural log transformations are routinely
needed for concentration data that vary over sev-
eral orders of magnitude, which iscommon in
areas of contaminant plumes. The data were
transformed to log space and fit acceptable criteria
for normality. After transformation to log space,
the techniques described in Chapter 4 were used
to guide the following steps for variogram
construction:

(1) An exponential moddl was used to fit a
directional variogram at an angle of 150 counter-
clockwise degrees to the east-west baseline. The
variogram had a nugget of 1.00 log concentration
squared, asill of 3.20 log concentration squared,
and arange of 1,295 m [Figure 5-8aand Table 5-1
(water quality A)].

(2) An exponential model was also fitto a
directional variogram at an angle of 240 counter-
clockwise degrees to the east-west baseline. The
variogram had a nugget of 1.00 log concentration
squared, asill of 3.20 log concentration squared,
and arange of 229 m [Figure 5-8b and Table 5-1
(water quality A)].

(3) Cross-validation was performed using the
geometric anisotropy of the two variograms and
the results [Figures 5-8c and 5-8d, and Table 5-1
(water quality A)] were acceptable.

5-23

ETL 1110-1-175
30 Jun 97

d. Theresiduals are symmetrically distribu-
ted, (Figure 5-8d). However, the scatterplot (Fig-
ure 5-8c) indicates that small concentrations are
overestimated and that large concentrations are
underestimated. This discrepancy in the estimates
does not indicate an error in the moddl, but rather,
indicates a consequence of data that have alarge
nugget compared to the sll; in this example the
nugget is approximately 30 percent of the sill. The
large nugget decreases the predictive capacity of
the model and increases the smoothing introduced
by kriging.

e. The established variogram then was used,
along with the measured locations, to produce
ordinary kriging estimates for al pointsin a 40-by-
20 grid using a grid spacing of about 91-by-91 m.
For the kriging procedure, a search radius of about
1,524 m with maximum of 16 and a minimum of
8 locations was specified. Gray- scale maps of
kriging estimates, back transformed to concentra-
tionsand in log space, as well as the kriging stan-
dard deviations in log space, are shown in Fig-
ures 5-9a, 5-9b, and 5-9c.

f.  The back-transformation procedure was a
simple exponentiation of the log space kriging
estimates. Such a back-transformation does not
use bias-correction factors to deal with moment
bias and, consequently, the back-transformed
values must be interpreted as a median value
rather than a mean value. The simple back-
transformation, however, is convenient and was
performed, principaly, to enhance visua inter-
pretation of the kriging estimates. Univariate sta-
tistics for the log-space kriging estimates are listed
in Table 5-2 (water quality A). The kriging results
do have noticeable smoothing; however, they also
indicate a plume emanating from an area just
northwest of the center of the area and movement,
aswell as some dispersion, to the southeast; the
estimates are a very good representation of the
results from many other more elaborate studies.

g. An additional comment concerning log
transformations is appropriate. To indicate the
effect of the log transform on probabilitiesin
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converting, or back-transforming, kriging esti-
mates, the kriging estimates and the kriging stan-
dard deviations, in log space, were used to estimate
the one-sided 95th percentile at each kriging-
estimate location according to the formula:

C 095

(5-1)
exp |Z (x) + 16450, (x)

where (2 Xo) (isthe kriging estimate at location x,,
in log space, and o,(X,) is the corresponding krig-
ing standard deviation in log space. The resulting
map is shown in Figure 5-9d. Such amap can be
used to indicate areas where the true concentration
has only a 5-percent chance of exceeding the value
shown.

h. To perform indicator kriging, the indicator
transformation, as described in Chapter 2, was
applied. An indicator cutoff equal to the median
value of 270 for the untransformed measured data
was selected. The model for indicator kriging esti-
mates the probability that the concentration would
be less than the indicator cutoff. The techniques
described in Chapter 4 were used to guide the fol-
lowing steps in variogram construction:

(1) No trendswere indicated during prelimi-
nary exploration, and ordinary kriging was tenta-
tively selected as the appropriate technique.

(2) A spherica model was used to fit an
anisotropic variogram at an angle of 150 deg
counterclockwise to the east-west basdline. The
variogram had a nugget of 0.05 indicator units
squared, asill of 0.25 indicator units squared, and
arange of 610 m [Figure 5-10aand Table 5-1
(water quality B)].
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(3) A spherical modd aso wasfit to an
anisotropic variogram at an angle of 240 deg
counterclockwise to the east-west basdline. The
variogram had a nugget of 0.05 indicator units
squared, asill of 0.25 indicator units squared, and
arange of 213 m [Figure 5-10b and Table 5-1
(water quality B].

i. The established variogram, along with the
indicator transform of the measured data, was used
to produce ordinary kriging estimates for the same
grid and search criteria as the first water-quality
example. A gray-scale map of the kriging esti-
mates is shown in Figure 5-11. The kriging indi-
cator map provides a gridded estimate for the
probability of contaminant values being less than
the indicator cutoff, which is a concentration of
270 in this example.

J.  The cutoff value selected for the preceding
indicator kriging example is probably higher than
many investigators involved in HTRW site investi-
gations would like to use. In this case the number
of measurements [66 in Table 4-1 (water qual-
ity B)] used in this example, which is probably a
high number of measurements for typical HTRW
site investigations, would not permit construction
of anindicator variogram for indicator values
much lower than the median. An aternative to this
problem would be to assume that the log-
transformed kriging model developed in the first
water-quality exampleis correct and to rely on the
kriging estimates from that model to determine
areas greater than or less than some indicator
value. The same estimates also could be used to
compute the probability that the concentration was
less than some arbitrarily selected value.
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